Code: IT7T2

IV B.Tech - I Semester – Regular/Supplementary Examinations October - 2018

SOFTWARE TESTING (INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks

 $11 \times 2 = 22 \text{ M}$

1.

- a) What is silver bullet?
- b) What are data bugs? Explain.
- c) What is the pesticide paradox?
- d) What is control flow graph?
- e) What is all-uses strategy? Explain.
- f) What is partition testing?
- g) What are path products?
- h) Define Knowledge- based system.
- i) What are state bugs?
- j) Which are asymmetric relations?
- k) What is idempotent?

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

2.	a) Describe the consequences of bugs in detail.	8 M
	b) Which are the tests belongs to structural test techniques and which are the tests belongs to functional test	
	techniques?	8 M
3.	a) Discuss various kinds of predicate blindness with exam	nple. 8 M
	b) Explain various cases for single loop in path testing.	8 M
4.	a) Describe the domain testing strategies.	8 M
	b) What is interface testing? Describe.	8 M
5.	a) What is Karnaugh -Veitch chart? How they are applied testing purpose.	l for 8 M
	b) Differentiate good state and bad state graphs.	8 M
6.	a) What is a graph matrix? How it was built?	6 M
	b) Explain in detail about node reduction algorithm and it applications.	ts 10 M